基礎理論
アルゴリズム
コンピュータ構成要素
システム構成要素
ソフトウェア
ハードウェア
ヒューマンインタフェース
マルチメディア
データベース
ネットワーク
セキュリティ
システム開発技術
ソフトウェア開発管理技術
😀 mypage
🥇 ranking
📊 chart
📏 rule
No.123 ある整数値を,負数を2の補数で表現する2進表記法で表すと最下位2ビットは"11"であった。
10進表記法の下で,その整数値を4で割ったときの余りに関する記述として,適切なものはどれか。
ここで,除算の商は,絶対値の小数点以下を切り捨てるものとする。
⭕️
💾
🖊 ☑️
⭕️ [[ AnswerCalc[0] ]] % A [[ AnswerCalc[1] ]]
設問では「ある整数値を…2進数記法で表すと最下位ビットが"11"であった。」としていますが、最下位2ビットが"11"となる整数値の特徴は正負によって異なります。

[正の数の場合]
正の数に対しては2の補数を適用しないので、2進数表現 xx…x11 をそのまま10進数に直すことを考えます(xは任意のビット)。最下位2ビットが"11"となる正の数は、
  • 111(2) → 7(10)
  • 1011(2) → 11(10)
  • 10111(2) → 23(10)
  • 110011(2) → 51(10)
というように、常に「4で割った余りが3である数」になります。これは4で割るという行為が2進数のビット列を右に2つシフトさせることと同義だからです。ビット列全体を右に2つシフトさせると、"11"(=10進数で3)の部分が端数(=除算の余り)となります。

[負の数の場合]
2の補数に変換したときと逆の手順で、その負数の絶対値を示すビット列を求めます。
  1. xx…x11 から1を引く。
     xx…x10
  2. 全てのビットを反転させる。
     xx…x01 //絶対値の2進数表現
これにより、2の補数表現で最下位2ビットが"11"となる負数があるとき、その負数の絶対値の最下位2ビットは必ず"01"になることがわかります。最下位2ビットが"01"となる数は、
  • 101(2) → (絶対値)5(10) → (負数)-5(10)
  • 1001(2) → (絶対値)9(10) → (負数)-9(10)
  • 10101(2) → (絶対値)21(10) → (負数)-21(10)
  • 110001(2) → (絶対値)49(10) → (負数)-49(10)
というような数の集合になります。これらの負数を4で割ると余りは 3 または -1 になります。ここで、設問の「除算の商は,絶対値の小数点以下を切り捨てるものとする。」という条件を適用すると、
  • -5÷4=-1.25 → 絶対値の小数点以下を切り捨てると商は-1
    商が-1ならば余りは-1
  • -9÷4=-2.25 → 絶対値の小数点以下を切り捨てると商は-2
    商が-2ならば余りは-1
というように、常に「4で割った余りは-1」になります。

以上より、最下位2ビットが"11"である整数値を4で割った余りは、その整数値が正ならば3、負ならば-1になります。よって「ア」の記述のみが適切です。
2の補数
2進数で負数を表現する方法の一つです。ある負の数を2の補数で表すには、①その負の数の絶対値を2進数に直し、②すべてのビットを反転して、③その結果に1を加えます。

例えば、10進数表記の -10 は以下の手順で2の補数に変換します。
  1. -10の絶対値である10を2進数に直す。
     10(10) → 1010(2)
  2. 1010(2)の全ビットを反転させる。
     1010(2) → 0101(2)
  3. ②の結果に1を加える。
     0101(2) → 0110(2)
💾 ✔️
[[ d.CommentTxt ]]
🏠 >   基本情報技術者試験 >     テクノロジー >     基礎理論 >  
< >
🥇